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Abstract. Probabilistic spatial reconstructions of past climate states are valuable to quantitatively study the climate system

under different forcing conditions because they combine the information contained in a proxy synthesis in a comprehensible

product. Unfortunately, they are subject to a complex uncertainty structure due to complicated proxy-climate relations and

sparse data, which makes interpolation between samples difficult. Bayesian hierarchical models feature promising properties to

handle these issues like the possibility to include multiple sources of information and to quantify uncertainties in a statistically5

rigorous way.

We present a Bayesian framework that combines a network of pollen samples with a spatial prior distribution estimated

from a multi-model ensemble of climate simulations. The use of climate simulation output aims at a physically reasonable

spatial interpolation of proxy data on a regional scale. To transfer the pollen data into (local) climate information, we apply

a forward version of the probabilistic indicator taxa model. The Bayesian inference is performed using Markov chain Monte10

Carlo methods following a Metropolis-within-Gibbs strategy.

We reconstruct mean temperature of the warmest and mean temperature of the coldest month during the mid-Holocene in

Europe using a published pollen and macrofossil synthesis in combination with the Paleoclimate Modelling Intercomparison

Project Phase III mid-Holocene ensemble. The output of our Bayesian model is a spatially distributed probability distribution

that facilitates quantitative analyses which account for uncertainties. Our reconstruction performs well in cross-validation15

experiments and shows a reasonable degree of spatial smoothing.

1 Introduction

Spatial or climate field reconstructions of past near surface climate states combine information from proxy samples, which

are mostly localized, with a model for interpolation between those samples. They are valuable for comparisons of the state of

the climate system under different external forcing conditions, because they produce a comprehensible product containing the20

joint information in a proxy synthesis. Thereby, spatial reconstructions are more suitable for many quantitative analyses of past

climate than individual proxy records. Unfortunately, spatial reconstructions are subject to a complex uncertainty structure due

to uncertainties in the proxy-climate relation and the sparseness of available proxy data which leads to additional interpolation

uncertainties. Therefore, a meaningful reconstruction has to include these uncertainties (Tingley et al., 2012). A natural way to

represent uncertainties in the proxy-climate relation are so called probabilistic transferfunctions (Ohlwein and Wahl, 2012). To25
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account for the uncertainties due to sparseness of proxy data, we suggest the use of stochastic interpolation techniques. Most

standard geostatistical methods like kriging or Gaussian modelling with Matérn covariances are designed for interpolation in

data rich situations, while in paleoclimatology we deal with sparse data. Therefore, their direct application to paleo situations

is not suitable. Instead, we propose to use interpolation schemes that contain additional physical knowledge, such that the

resulting product combines the information from a proxy network in a physically reasonable way (Gebhardt et al., 2008). As5

will be shown, our approach can in addition be used for structural extrapolation.

We use Bayesian hierarchical modelling to combine the two modules mentioned above: The (local) proxy-climate relation

and spatial interpolation. The Bayesian framework allows the combination of multiple data types. In our case, these are pollen

records to constrain the local climate, and climate simulations, which produce physically consistent spatial fields for a given

set of large scale external forcings. In addition, our framework accounts for several sources of uncertainty in a statistically10

rigorous way by estimating and inferring a multivariate probability distribution, the so-called posterior distribution (Gelman

et al., 2013).

Pollen are the terrestrial proxy with the highest spatial coverage (Bradley, 2015), and there is a long tradition of using

them for inferring past climate by applying statistical transferfunctions (Birks et al., 2010). In recent years, several traditional

transferfunctions like indicator taxa, modern analogues, and weighted averaging have been translated to Bayesian frameworks15

(e.g., Kühl et al., 2002; Haslett et al., 2006; Holden et al., 2017). Pollen records contain information on the local climate during

a time slice, where the spatial scale is constrained by the influx domain of horizontal pollen transport. Equilibrium simulations

with earth system models (ESMs) produce a physically consistent estimate of the atmospheric and oceanic circulation and the

regional energy balance given a set of forcings (boundary conditions). Important boundary conditions, for which information

are available from proxy data and physical models, are insolation determined by the earth orbital parameters, greenhouse20

gas concentrations, ice sheet configurations, and land-sea masks. We use an ensemble of simulations from different ESMs to

estimate a prior distribution, which contains a wide range of physically reasonable climate states. The combination of these

two sources of information can be interpreted as a downscaling of forcing conditions via ESMs and an upscaling of local

information contained in pollen records via spatial covariance matrices. The result is a spatially distributed and physically

reasonable probabilistic climate reconstruction on continental domains.25

We apply our framework to a mid-Holocene (MH, around 6ka) example for two reasons. First, compared with other time

slices before the common era, the MH has a high proxy data coverage, particularly for Europe. Therefore, we can use raw

pollen and macrofossil data with a sparse but relatively uniform spatial coverage over Europe as input for probabilistic trans-

ferfunctions, while still having other reconstructions available, that can be compared with our results. Second, a multi-model

ensemble of climate simulations with boundary conditions adjusted to the MH was produced in the Paleoclimate Modelling30

Intercomparison Project Phase III (PMIP3) project (Braconnot et al., 2011). This ensemble is used to estimate the spatial prior

distribution. The posterior distribution, which we estimate, is a multivariate probability distribution, with marginal distributions

for each grid box, as well as spatial correlations and correlations between two climate variables, the mean temperature of the

warmest month (MTWA) and the mean temperature of the coldest month (MTCO). For further analyses, we create samples

from this distribution, such that each sample is an equally probable estimate of the bivariate spatial field. In the context of35
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temporal reconstructions these samples were called "climate histories" by Parnell et al. (2016). From the samples, quantitative

properties of the climate state during the MH, which account for uncertainties, are computed. In addition, our framework can

be used to compare the model-data mismatch of multiple ESMs, to analyse the consistency of a given proxy network, and to

help in the identification of potential outliers.

This work is related to several concepts that were developed for applications in paleoclimatology. In recent years, several au-5

thors constructed Bayesian hierarchical models (BHMs) for paleoclimate reconstructions: Tingley and Huybers (2010) intro-

duced a spatio-temporal BHM for reconstructions of the last millennium with an underlying structure that is stationary, linear,

and Gaussian. Other authors developed temporal (Li et al., 2010; Parnell et al., 2015) or small-scale spatio-temporal BHMs

(Holmström et al., 2015). All of these approaches differ from our model in being purely proxy data driven. Additional informa-

tion on orbital configurations were incorporated by Gebhardt et al. (2008) and Simonis et al. (2012) via an advection-diffusion10

model which is combined with proxy data using a variational inference approach. Li et al. (2010) included information on

solar, greenhouse gas, and volcanic forcing for spatially averaged reconstructions of the last millennium via linear regression.

Annan and Hargreaves (2013) combined Paleoclimate Modelling Intercomparison Project Phase II (PMIP2) simulations with

the syntheses of Bartlein et al. (2011) and MARGO Project Members (2009) in a multi-linear regression model. We build on

these approaches by incorporating fields that are simulated from a set of MH forcing conditions in a fully Bayesian framework.15

A different approach to combine proxy data and climate simulations for spatio-temporal reconstructions of the common era

was developed by Steiger et al. (2014) and Dee et al. (2016) using so called off-line data assimilation methods. They apply

an ensemble Kalman filter, where the observation operators are forward models for proxy data, and the prior covariance is

estimated from a database of transient climate simulations. Our purely spatial reconstructions can be interpreted as an off-line

data assimilation with only one time step. This reduced dimensionality permits the exploration of the full posterior distribu-20

tion despite incorporating non-linear and non-Gaussian elements in the observation operator and a multi-modal spatial prior

distribution estimated from a multi-model ensemble.

The structure of the paper is as follows. In Sect. 2, we describe the pollen synthesis and climate simulations which we

use. This is followed by a detailed description of our proposed Bayesian framework in Sect. 3. Results from applying our

methodology to the data are presented in Sect. 4. Finally, we discuss and summarize our methodology and results in Sect. 525

and 6.

2 Data

2.1 Proxy data

The pollen and macrofossil synthesis, that we use in this study, stems from Simonis et al. (2012) as part of the European

Science Foundation project DECVeg (Dynamic European Climate-Vegetation impacts and interactions). In the following, we30

refer only to pollen instead of pollen and macrofossils for linguistic simplicity. Out of the four time slices (6ka, 8ka, 12ka,

13ka), which were compiled, we only use the 6ka dataset because there is no ensemble of climate simulations available

for the other three time slices. For 50 paleosites, presence and absence information for 59 taxa are provided. The data is
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already statistically preprocessed to remove co-occurring taxa that lead to an underestimation of uncertainty (Kühl et al., 2002;

Gebhardt et al., 2008). The synthesis is optimised for the use in local climate reconstructions with different versions of the

probabilistic indicator taxa model (PITM, originally called "pdf method"; Kühl et al., 2002), and is therefore well-suited for

the implementation in a BHM that combines probabilistic transferfunctions with stochastic interpolation methods. The PITM

model is described in detail in Sect. 3.3.5

The 50 paleosites are sparsely but relatively uniformly distributed over Europe. Their locations are delimited by 6.5° W,

26.5° E, 37.5° N and 69.5° N. Compared with other recent syntheses like Bartlein et al. (2011), less records are included due to

high quality control criteria. The raw pollen data and radiocarbon measurements, from which at least one was supposed to be

close to 6ka, had to be available to recalculate age-depth models and ensure the use of calibrated radiocarbon dates as common

time scale. Each site is assigned to the corresponding cell of a 2° by 2° grid which we use for our reconstructions. The locations10

of the proxy samples are depicted by black dots in Fig. 1. The full list of sites included in the synthesis can be found in Simonis

et al. (2012). The list of taxa, which remain for each site after statistical preprocessing, is given in Simonis (2009).

2.2 Climate simulations

We use a multi-model ensemble of climate simulations which were run within PMIP3 with forcings adjusted to the MH. This

includes changed orbital configurations and greenhouse gas concentrations (Braconnot et al., 2011). The ensemble contains15

all available MH simulations in the PMIP3 database (downloaded from the German Climate Computing Center (DKRZ) long

term archive, available under https://cera-www.dkrz.de), which have a grid spacing of at most 2°. This constraint, which retains

only the models with the smallest grid spacings, is chosen to better match the resolutions of pollen samples and simulations.

The condition results in using seven model runs performed with the CCSM4, CNRM-CM5, CSIRO-Mk2-6-0, EC-Earth-2-2,

HadGEM2-CC, MPI-ESM-P, and MRI-CGCM3. Properties of the included simulations are given in Table 1. The ensemble is20

a multi-model ensemble with common boundary conditions. The models are run to an equilibrium state (spin-up), followed by

typically around 100 simulated years to minimize noise due to high frequency internal variability. Therefore, the differences

within the ensemble can be interpreted as modelling uncertainties (epistemic uncertainty).

The mean summer climate expressed as MTWA (Fig. 1a) from the MH ensemble is warmer than the University of East Anglia

Climatic Research Unit (CRU) 1961 to 1990 reference climatology (CRU TS v.4.01 over land, Harris et al. (2014), Harris and25

Jones (2017), and HadCRUT absolute over sea, Jones et al. (1999)) in large parts of Europe, especially eastern Europe and the

Norwegian Sea. These areas coincide predominantly with areas of large ensemble spreads, expressed as the size of point-wise

90% credible intervals (CIs) of the prior distribution in Fig. 1c. The construction of the prior distribution is described in Sect.

3.2. The spread increases up to 10K in some areas of southern and eastern Europe, which might originate from varying change

patterns of the general circulation over Europe in the models. In contrast, the MH mean winter climate measured by MTCO in30

Fig. 1b shows a more dispersed structure with cooling in Fennoscandia, warming in the Mediterranean and Balkan peninsula,

and mixed patterns in western and central Europe. The ensemble spread is predominantly small (Fig. 1d), but increases towards

northern Europe with very large inter-model differences for the Norwegian Sea and eastern Fennoscandia. Most of the grid

box anomalies for MTWA as well as MTCO are not significant on a 5% level. Here, a positive anomaly is called significant if
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the probability of the prior temperature to exceed the reference climatology is at least 0.95. Significant negative anomalies are

defined accordingly. The significance estimates are calculated point-wise.

2.3 Reconstruction variables

The spatial distribution of taxa is limited by three climatic factors: Temperature during growing season and in winter, and

moisture availability (Huntley, 2012). Therefore, these three factors, translated into quantitative variables, are important for5

climate reconstructions from pollen. For large parts of Europe, it was shown in Simonis (2009) that the PITM model (see Sect.

3.3) is well-suited for joint reconstructions of July and January temperature as measures for the warmth of growing season

and cold of winter, because at least one of these two variables is a limiting factor for most taxa growing in the mid and high

latitudes of Eurasia during the Holocene. Instead, testing various climate variables as indicators for moisture availability was

less promising since the moisture availability is rarely a limiting factor for European taxa (Simonis, 2009). Hence, in this study,10

we choose MTWA and MTCO as the target variables for our climate reconstructions. This is a compromise between variables

that are bioclimatically meaningful and variables for which accurate data is available to calibrate the transferfunctions against

modern vegetation and climate data. In the mid to high latitudes, MTWA and MTCO are highly correlated with July and

January temperature, respectively, which is why they are also described as "functionally equivalent" (Bartlein et al., 2011).

To calculate MTWA and MTCO from time series of monthly averages, the data is first interpolated to the desired spatial15

grid. Then, for each hydrological year (October to September), the warmest and coldest month are extracted. We choose

the hydrological instead of the calendar year to ensure that the months are taken from connected seasons. Afterwards, the

climatological mean is calculated by averaging over the values for each year.

3 Methods

3.1 Bayesian framework20

We use Bayesian statistics to combine a network of pollen samples with an ensemble of PMIP3 simulations because in this

approach each source of information has an associated uncertainty that is naturally included in the inference process. In this

section, we specify the quantities that are combined in our reconstruction, and describe the inference algorithm that is used to

create the results presented below as well as the statistical measures which we use to assess the reconstructions.

In the following, we denote fossil pollen data by Pp, past climate by Cp, modern vegetation and climate data for the cal-25

ibration of transferfunctions by Pm and Cm, respectively, and additional model parameters by Θ := (ω,z,θ). Here, ω and z

represent weights of the PMIP3 ensemble members as defined in Sect. 3.2 and 3.4, and θ are transferfunction parameters, which

are specified in Sect. 3.3. We are interested in the conditional distribution of Cp and Θ given fossil pollen, modern vegetation,

and modern climate data, i.e. we want to estimate the posterior distribution P(Cp,Θ |Pp,Cm,Pm).
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Applying Bayes’ theorem to P(Cp,Θ |Pp,Cm,Pm) (in the following, we omit normalizing constants), we get:

P(Cp,Θ |Pp,Cm,Pm)︸ ︷︷ ︸
Posterior

∝ P(Pp,Pm |Cp,Cm,Θ)︸ ︷︷ ︸
Data Stage / Likelihood

· P(Cp,Cm |Θ)︸ ︷︷ ︸
Process Stage

· P(Θ)︸ ︷︷ ︸
Prior Stage

. (1)

Following Tingley and Huybers (2010), we call P(Pp,Pm |Cp,Cm,Θ) the data stage, P(Cp,Cm |Θ) the process stage, and

P(Θ) the prior stage. The structure of the Bayesian model can be expressed by a directed acyclic graph as shown in Fig. 2. In

the graph, each node represents a variable and the arrows indicate dependences of variables.5

We assume that the model weights ω and z are a priori independent of the transferfunction parameters θ, and that the data

stage is conditionally independent of ω and z given Cp. Furthermore, by construction, Pm and Cm only contribute to the

reconstruction via the transferfunction parameters, i.e. they are assumed to be independent of all other quantities. Hence, we

can rewrite Eq. (1) and get

P(Cp,Θ |Pp,Cm,Pm) ∝ P(Pm |Cm,θ) P(Pp |Cp,θ) P(Cp |z) P(z |ω) P(ω) P(θ). (2)10

In paleoclimatology, the data stage is traditionally called transferfunction, which in our case is formulated in a forward way. It

probabilistically models the proxy data given climate variables and is assumed to act locally, i.e. given the climate at location

x, a pollen sample at x is conditionally independent of the climate and proxy data at all other locations. A more rigorous

formulation is given in Sect. 3.3.

The process stage stochastically interpolates the local climate information from the proxy data to a spatial domain. In15

our model, this interpolation is performed using a mixture of Gaussian distributions calculated from the ensemble of PMIP3

simulations, which is described in detail in Sect. 3.2. Note that our approach is not restricted to interpolation between proxy

samples, but allows structural extrapolation through the eigenvectors of the covariance matrix and the weights of the ensemble

members. Hence, we can infer climate beyond the domain of the proxy synthesis. The prior stage defines prior distributions

for the model parameters Θ. These prior distributions are necessary to get a closed Bayesian model which ensures that the20

posterior is a valid probality distribution (Gelman et al., 2013).

3.2 Preprocessing of PMIP3 simulations

We model the process stage in Eq. (1) and the prior distributions for ω and z based on the ensemble of PMIP3 simulations

described in Sect. 2.2 following the ensemble kernel dressing approach of Schölzel and Hense (2011). Six steps are applied

successively:25

1. All simulations are projected to a 2° by 2° grid using bilinear interpolation.

2. We calculate the climatological means for MTWA and MTCO from the full timeseries of each simulation as described

in Sect. 2.3. This minimizes high frequency internal variability which cannot be resolved by the pollen data because it is

a time integrated quantity (Annan and Hargreaves, 2013).

3. The resulting climatologies from step two define the means µk, k = 1, ...,K, of the mixture components, where K is the30

number of ensemble members. Each mixture component is assumed to be multivariate Gaussian. The dimension N of
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each Gaussian vector is either the number of grid boxes in the case of single variable reconstructions or twice the number

of grid boxes in the case of joint reconstructions of MTWA and MTCO.

4. Following the kernel approach in Silverman (1986), we calculate the covariance matrix Σ̃prior as the empirical covariance

of the inter-model differences scaled by the Silverman factor

f :=
(

4
K · (N + 2)

) 2
N+4

. (3)5

Hence, Σ̃prior is given by

Σ̃prior = f · 1
K − 1

K∑

k=1

(µk − µ̄) (µk − µ̄)t , (4)

where µ̄ is the mean over all mixture components, and the superscript t denotes the matrix transpose.

5. To get a non-singular covariance matrix and avoid spurious correlations, we apply the graphical lasso algorithm (Fried-

man et al. (2008), implemented in the R-package glasso, https://cran.r-project.org/package=glasso) to Σ̃prior. This algo-10

rithm approximates the precision matrix (inverse covariance) by a positive definite, symmetric, and sparse matrix Σ−1
prior.

Therefore, Σprior is a validN -dimensional covariance matrix that we use as covariance matrix of the mixture components.

The sparseness of the precision matrix has the additional advantage that computationally efficient Gaussian Markov ran-

dom field techniques (Rue and Held, 2005) can be used, which reduces the computational burden significantly.

Glasso maximizes the penalized log-likelihood15

logdetΣ−1
prior− trace(Σ̃prior Σ−1

prior)− ρ‖Σ−1
prior‖1, (5)

where ρ is the penalty parameter, ‖·‖1 is the vector L1-norm, and the first two terms are the Gaussian log-likelihood. To

determine ρ, we first recognize that for values smaller than ρ= 0.3 the resulting matrices become numerically unstable in

our application due to the small ensemble size. Five values for ρwere tested: 0.3, 0.5, 0.7, 1.0, and 2.0. Larger values lead

to sparser precision matrices and therefore to smaller spatial correlations. This in turn means that the local information20

from the proxy data is spread less into space. For each of the five parameters we perform a cross-validation experiment

and compare the resulting Brier scores (see Sect. 3.5). While the smallest penalty parameters have the best mean Brier

scores, the differences are generally small (Fig. 8). On the other hand, the influence of the penalty term in Eq. (5) on the

overall regression increases from 79.5% for ρ= 0.3 to 98.5% for ρ= 2.0. Based on these diagnostics, we choose ρ= 0.3

for the reconstructions in Sect. 4 to get a numerically stable covariance which performs at least as good as other choices25

of ρ in cross-validations, and is comparably little influenced by the penalty term. The sensitivity of the reconstruction

with respect to ρ is further studied in Sect. 4.4. Note that for other applications of our framework different values of ρ

can produce the best results.

6. The result of the previous steps is a mixture distribution

P(Cp |ω,µ1, ...,µK ,Σprior) =
K∑

k=1

ωk N (Cp |µk,Σprior) , (6)30
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where ω = (ω1, ...,ωK) are the prior weights.

We define a Dirichlet distributed prior for ω with parameter 1
2 for each of the K components. This corresponds to an

objective prior (Jeffrey’s prior; Gelman et al., 2013) in the Dirichlet-multinomial model. The variable z is added as a

help parameter, which simplifies the inference algorithm as described in Sect. 3.4.

3.3 Transferfunctions5

The Bayesian model uses probabilistic transferfunctions to model the pollen-climate relation. From all the terms in Eq. (2), the

calibration layer (Pm |Cm,θ), the observation layer P(Pp |Cp, ,θ), and the prior distribution of the transferfunction parameters

P(θ) are related to the transferfunction (Parnell et al., 2015).

To reconstruct climate from the Simonis et al. (2012) synthesis, we need a transferfunction that converts presence-absence

information on taxa to climate variables. As described above, our main reconstruction target is the bivariate climate C =10

(C1,C2), where C1 is MTWA and C2 is MTCO. Previously, reconstructions from the Simonis et al. (2012) dataset were

performed using PITM, orginially named "pdf method" (Kühl et al., 2002), which is an extension of the classical indicator

species method (Iversen, 1944). PITM fits probability distributions to presence-absence maps of taxa (Schölzel et al., 2002),

which are plotted in the bivariate climate space. The reference climatology for this mapping is derived from the CRU TS v.4.01

1961 to 1990 monthly averages following the definitions of MTWA and MTCO described in Sect. 2.3. Initially, Gaussian15

distributions were used for calibration (Kühl et al., 2002). Later, the model was extended to mixtures of Gaussians (Gebhardt

et al., 2008). Taxa are treated as conditionally independent given climate. A statistical pre-selection of taxa, which are present

in a sample, is applied to avoid over-fitting originating from violations of the independence assumption between taxa, i.e. due

to co-occurrence of taxa (Kühl et al., 2002). This procedure uses the Mahalanobis distance (Mahalanobis, 1936) between the

fitted distributions.20

We reformulate PITM in a forward way using quadratic logistic regression similar to Stolzenberger (2017). For each taxa, we

fit a regression model (response function) describing the probability of observing the taxa for a given value of C. The idea of

using quadratic logistic regression stems from the BIOMOD (BIOdiversity MODelling) software which is a model to predict

species distributions (Thuiller, 2003). The regression for taxa T contains linear and quadratic terms for each of the climate

variables as well as an interaction term:25

P(T = 1 |C = (C1,C2)) = logit
(
βT1 +βT2 C1 +βT3 C2 +βT4 C1C2 +βT5 C

2
1 +βT6 C

2
2

)
. (7)

Here, logit denotes the logistic function and βT1 , ...,β
T
6 are regression coefficients. This regression leads to a unimodal response

function which is anisotropic but has two symmetry axes, as can be seen for dwarf birch (Betula nana) and European ivy

(Hedera helix) in Fig. 3.

For the calibration against the modern dataset, we use presence (T=1) as well as absence (T=0) information of the taxa30

which can be justified by assuming that the vegetation maps contain accurate information on the presence or absence of taxa.

On the other hand, for the fossil pollen samples, we do not include absent taxa in the reconstruction, as the absence of a taxa

in a pollen assemblage can have multiple non-climatic reasons like changing biologic competition or pollen transport effects
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(Gebhardt et al., 2003). From the definition given in Sect. 2.3, it follows that at any location MTWA is larger or equal than

MTCO. Formally incorporating this constraint in the inference leads to a non-linear condition on the regression parameters,

which is very hard to implement. Therefore, we choose the more practical way of adding artificial absence information for

combinations of MTWA and MTCO such that MTCO > MTWA. While this leads to transferfunctions, which do not preclude

reconstructions of MTCO values larger than MTWA, it is at least very improbable.5

To apply the response functions for individual taxa to a set of proxy data, we assume that proxy samplesP (s), where s= 1, ...,S

subscripts the proxy samples, are conditionally independent given a climate field and that, conditioned on C(xs), where xs is

the location of the s-th sample, P (s) is independent of the climate at all other locations. This leads to the following probabilistic

model for the set of modern vegetation samples

P(Pm |Cm,θ) =
Sm∏

s=1

∏

T ∈T (P )

P
(
PTm(s) |Cm(xs),βT1 , ...,β

T
6

)
. (8)10

Here, PTm(s) is the presence or absence of taxa T in the s-th calibration sample, T (P ) is the set of all Taxa occurring in the

fossil pollen samples, and θ := (βTi , i= 1, ...,6, T ∈ T (P )). P(Pp |Cp,θ) is given by

P(Pp |Cp,θ) :=
Sp∏

s=1

∏

T ∈T (s)

P
(
PTp (s) |Cp(xs),βT1 , ...,βT6

)
, (9)

where T (s) are the taxa occurring in sample s.

Finally, we define a prior distribution for θ. We use a Gaussian distribution centred at 0 and a marginal variance of 10 for15

each parameter βTi . Due to the absence of prior information on the correlation structure, we assume independence between the

taxa as well as within a taxa. Hence, we get

P(θ = (βTi , i= 1, ...,6, T ∈ T (P ))) =
∏

T∈T (P )

6∏

i=1

N
(
βTi |0,10

)
. (10)

Due to the high information content in the calibration data set, the influence of the prior (Eq. 10) on the parameter estimates

is negligible. Using a flat prior for Cp(xs) and removing spatial correlations, local climate reconstructions at the locations of20

the proxy samples can be calculated. These reconstructions depend only on the proxy data in grid box xs. Results of local MH

reconstructions for each grid box with proxy data are shown in Fig. 4, where the local reconstruction means and the marginal

90% CIs are plotted for MTWA and MTCO.

Local reconstructions can also be used to evaluate the ability of the transferfunctions to reconstruct modern climate which

provides a reference for possible regional biases. For the PITM model such evaluations have been performed by Gebhardt et al.25

(2008) and Stolzenberger (2011). Both evaluations show that the model tends to underestimate north-south gradients leading

to positive biases in Fennoscandia, and slightly negative biases in the Mediterranean. The biases as well as the uncertainties are

larger for winter temperature than for summer. Therefore, results for MTCO in northern Fennoscandia should be treated with

caution, while for all other regions biases of the reconstruction means are within reconstruction uncertainties.
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3.4 Inference and computational performance

Because the PITM model is non-Gaussian and non-linear, the posterior climate follows again a mixture distribution, but the

components do not belong to a standard probability distribution, that could be used for sampling. Therefore, we use Markov

chain Monte Carlo (MCMC) techniques to asymptotically sample from the correct posterior distribution. These samples allow

analyses beyond summary statistics like means and standard deviations. We choose a Metropolis-within-Gibbs strategy, which5

means that we sample alternately from the full conditional distributions (i.e. the distribution of the respective variable given all

other variables) of θ, ω, z, and Cp.

To sample the regression parameters θ in Eq. (7) to (9) efficiently, the data augmentation scheme of Polson et al. (2013) is

used. For taxa T , the full conditional is only depending on Cp, Cm, PTp , and PTm, but not on other taxa. Therefore, we can

sample βT1 , ...,β
T
6 independently from the other taxa. Polson et al. (2013) introduce help variables γTl , l = 1, ...,L, where L10

is the number of observations (absence and presence) of taxa T , such that P(γTl |βT1 , ...,βT6 ,Cm,Cp) is Pólya-Gamma (PG)

distributed, and P(βT1 , ...,β
T
6 |PTm,PTp ,γT1 , ...,γTL ) is Gaussian. Therefore, we sample alternately from a PG distribution using

the sampler of Windle et al. (2014) and from a multivariate Gaussian. The PG sampler is implemented in the R package

BayesLogit (Windle et al., 2013).

An easy way to sample from the climate mixture distribution is to introduce a multinomially distributed augmentation15

variable z = (z1, ...,zK) such that

P(ω) = Dirichlet
(
ω1, ...,ωK | 12 , ..., 1

2

)
(11)

P(z |ω) = Multinomial(z1, ...,zK |n= 1, ω1, ...,ωK) (12)

P(Cp |z) =
K∏

k=1

(
N (Cp |µk,Σprior)

)zk , (13)

i.e. Cp, conditioned on z selecting model k, is Gaussian. Integrating out z yields the mixture distribution Eq. (6). Equations20

(11) to (13) lead to full conditionals for ω and z, which are again Dirichlet and multinomially distributed but with updated

parameters. Therefore, we can use Gibbs sampling to update ω and z. Preliminary tests revealed that in our application the

prior distribution of ω has a negligible influence on the posterior distributions of z and Cp.

To sample from the full conditional of Cp, we separate the grid boxes xP with at least one proxy record from those without

any proxy records denoted by xQ. There is no closed form available for the full conditionals of Cp(xP ). Therefore, we use25

a random walk Metropolis-Hastings algorithm to update Cp(xP ) sequentially for all members of xP . As these updates are

two-dimensional and the target distributions are in most cases close to Gaussian, the random walk proposals are very efficient.

As the transferfunctions act locally, Cp(xQ) is conditionally independent of Pp given Cp(xP ) and z. Therefore, we subse-

quently update Cp(xQ) by sampling from P(Cp(xQ) |Cp(xP ),z) which is Gaussian. Detailed formulas for the full conditional

distributions are given in Appendix A.30

The mixture distribution Eq. (6) leads to a multimodal posterior. Due to the high dimensionality of Cp, the likelihood of

choosing a new model zk from one MCMC step to the next one is very small. This leads to very slow mixing of the MCMC

algorithm described above. To speed up the mixing, we apply a Metropolis coupled MCMC strategy (MC3), also called parallel
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tempering, which was developed by Geyer (1991) and adapted to parallel computer architectures by Altekar et al. (2004) and

Werner and Tingley (2015). We run A MCMC chains in parallel, and after every M steps, we use an additional Metropolis-

Hastings step to swap the states of the Markov chains a1 and a2 with probability 0 < pa1,a2 < 1, where pa1,a2 is calculated

from the Metropolis-Hastings odds ratio. The Markov chains are created by exponentiating the process stage and the data stage

by constants ν1 = 1 > ... > νA > 0. The first Markov chain (ν1 = 1) asymptotically retains the original posterior distribution5

for all variables, whereas the subsequent chains sample from a flatter posterior distribution, in which it is easier to jump from

one mixture component to another. Following empirical testing, we run the European reconstructions with A= 8 parallel

chains, levels ν1 = 1,ν2 = 1.25−1, ...,ν8 = 1.25−7, and swaps after every M = 30 steps.

As a second strategy to speed up the inference, we treat the grid boxes with proxy data and those without proxy data

sequentially. Because of the Gaussian mixture components in the process stage and because the grid boxes without proxy data10

are not influencing the posterior model weights, we can first integrate out Cp(xQ) and get an estimate of the joint distribution

of ω, z, and Cp(xP ). In a second step, we sample from Cp(xQ) conditioned on Cp(xP ) and z, which leads to joint samples of

Cp from the asymptotically correct posterior distribution. In practice, this is done by drawing a sample of Cp(xQ) conditioned

on each of the MCMC samples from (Cp(xP ),z,ω,θ). This strategy reduces the number of MCMC chains needed in the MC3

algorithm, and it reduces the computation time of each MCMC update due to faster matrix operations. Pseudo-code for the15

MC3 algorithm is given in Appendix B.

The remaining bottleneck in computation time is the estimation of the transferfunction parameters due to the large modern

calibration set. While in theory the observation layer influences the updates of θ, in practice the influence of Eq. (9) on the

posterior of θ is negligible. Therefore, we use a modularization approach (Liu et al., 2009) similar to Parnell et al. (2015)

in cross-validation experiments, where a sequence of reconstructions with slightly changed proxy networks is computed (see20

Sect. 3.5). This means that we cut feedback between Eq. (8) and Eq. (9) by first drawing as many MCMC samples as necessary

from θ using only Eq. (10) and Eq. (8). Thereafter, we reconstruct Cp using these samples instead of sampling θ from its full

conditional.

For a 798 dimensional climate posterior as it is the case in joint reconstructions of MTWA and MTCO, and 45 grid boxes

that contain at least one proxy record, we create 75,000 MCMC samples for each of eight parallel chains, where every chain25

runs on one central processing unit (CPU). The first 25,000 samples are discarded as burnin. To reduce the autocorrelation of

subsequent samples, we extract every fifth sample to create a set of 10,000 posterior samples which is used for further analyses.

On a standard desktop computer with at least eight CPUs, reconstructions with the modularized model can be computed in

approximately 30 minutes. The convergence of all MCMC variables is checked using the Gelman-Rubin-Brooks criterion

(Brooks and Gelman, 1998) implemented in the R package coda (Plummer et al., 2006).30

3.5 Assessing the added value of reconstructions

To analyse the added value of combining proxy data and PMIP3 simulations compared to only using PMIP3 simulations and

to assess the consistency of the reconstruction, we perform leave-one-out cross validation. Due to the sparseness of the proxy
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network, we do not leave out larger amounts of data. In addition, the cross-validations can be used to identify systematic

mismatches between proxy data and simulations as well as potential outliers in the data.

The cross-validation is performed in the observation space and consists of three steps:

1. A reconstruction with all proxy samples except for those in grid box x is computed.

2. The forward model Eq. (9) is applied to the posterior and the prior distribution of Cp(x) to get two probabilistic predic-5

tions for each proxy sample Pp(s) with xs = x.

3. Proper scores (Gneiting and Raftery, 2007) are computed for both probabilistic predictions. Then, the corresponding

skill score, which is a measure of the added value from constraining the PMIP3 ensemble by pollen data, is calculated.

The PITM forward model maps a climate field to a binary field (presence or absence of a taxa), where the probabilistic

prediction is represented by the probability of presence p ∈ [0,1]. A common proper score function for binary variables is the10

Brier score (BS; Brier, 1950) given by

BS(T ) := (δT (1)− p)2 + (δT (0)− (1− p))2 =





2 + 2p2− 4p if T = 1

2p2 if T = 0
(14)

where δT denotes the indicator function of taxa T . The BS takes values between zero and two, where zero corresponds to a

perfect prediction and two to the worst possible prediction. In a recent study, Stolzenberger (2017) used the BS to assess the

skill of PMIP3 simulations for the MH using a network of pollen records. To calculate the BS for a set of climate samples, either15

MCMC samples from the posterior or independent samples from the prior mixture distribution, the PITM forward model is

applied to each sample which leads to a set of probabilistic predictions pj(T ), j = 1, ...,J for taxa T . Predictions are calculated

for each taxa which occurs in sample P (s). The joint score of P (s) is then calculated by averaging the BS of each taxa and

prediction:

BS(P (s)) :=
1

|T (s)|J
∑

T∈T (s)

J∑

j=1

(
2 + 2pj(T )2− 4pj(T )

)
. (15)20

If multiple samples are assigned to one grid box, the mean score of those samples is taken. Finally, the Brier skill score (BSS)

is computed by comparing BS for posterior and prior:

BSS :=
BS(Prior)−BS(Posterior)

BS(Prior)
. (16)

4 Results

In this section, results from the MH reconstruction for Europe with the Simonis et al. (2012) synthesis and the PMIP3 MH25

ensemble are presented. We study the mean and uncertainty structure of the posterior distribution, the added value of the

reconstruction, the performance of different ensemble members, the sensitivity with respect to the glasso penalty parameter, and

the results of joint compared to separate MTWA and MTCO reconstructions. Results from all reconstructions are summarized

in Table 1.
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4.1 Posterior mean and uncertainty structure

The spatially averaged mean temperature of the reconstruction (posterior mean) is 17.77°C (90% CI: (17.44°C, 18.09°C)) for

MTWA and 2.24°C (90% CI: (1.87°C, 2.62°C)) for MTCO, which is in the former case equal to the CRU reference climatology

(+0.01 K) and in the latter 1.11 K warmer. Larger differences are found for subregions (Fig. 5a, 5b): For MTWA as well as

MTCO, cooler temperatures than today are found in most areas south of 54° N, while north of this line the temperatures are5

predominantly higher than today with the exception of a cooling in parts of Fennoscandia. The on average higher MTCO

anomalies compared to MTWA stem from higher anomalies in Fennoscandia. Many of the warming anomalies in the northern

part as well as the cooling anomalies in the southern part of the domain are significant on a 5% level (see Sect. 2.2 for

the definition of significance in the Bayesian context). In particular, using the joint information in the pollen synthesis and

combining it with the spatial structure of the PMIP3 ensemble leads to more significant signals than in any of the individual10

data products.

Most of the taxa, which are used in the reconstruction, are stronger confined for MTWA than for MTCO because the growth

of most European plants is more sensitive to conditions during the growing season. This results in more constrained local

MTWA reconstructions (Fig. 4a), which is in concordance with findings from Gebhardt et al. (2008). Hence, the uncertainty in

the MTWA reconstruction is smaller (spatially averaged point-wise 90% CI size of 2.90 K) than in the MTCO reconstruction15

(spatially averaged point-wise 90% CI size of 3.18 K) (Fig. 5c, 5d). The uncertainty is smallest for grid boxes with proxy

records, and highest in the north eastern and north western parts of the domain where the PMIP3 ensemble spread is large and

the constraint from proxy data is weak. Besides, the reconstruction uncertainty has small spatial variations. The ratio of the CI

size of spatially averaged temperatures and the spatially averaged point-wise CIs can be interpreted as a measure for the spatial

degrees of freedom in the reconstruction.20

The highest reduction of uncertainty due to the inclusion of proxy data is found at grid boxes with proxy data, as quantified

by a spatially averaged reduction of point-wise CI sizes from prior to posterior of 69.5% compared to 60.5% for grid boxes

without proxy data (Fig. 5e, 5f). The uncertainty reduction for MTWA is higher for terrestrial grid boxes than marine ones, but

the smaller PMIP3 ensemble spread over sea leads to similar CI sizes. For MTCO, the reduction of uncertainty is highest for

terrestrial areas and the Norwegian Sea and lowest for the Mediterranean Sea and off the French and Iberian coast. But since25

the PMIP3 ensemble spread is small in these areas, the reconstruction uncertainty is still lower than in some land parts of the

domain.

To study whether the degree of spatial smoothing of the reconstruction is reasonable, we calculate a measure inspired by

discrete gradients. For each grid box, we calculate the mean absolute difference between the value in the box and its eight

nearest neighbours. Then, we compare the spatial averages of this homogeneity measure H in the posterior, the climatologies30

of the PMIP3 ensemble members and the reference climatology. We expect a reconstruction with a good degree of smoothing

to have similar spatial homogeneity than the PMIP3 ensemble and the reference climatology, as H depends mainly on local

features like orography or land-sea contrasts, and we expect these features to affect the local climate of the MH similarly than

today’s climate since reconstructions suggest only small changes in topography between the MH and today. For MTWA, we
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get a posterior mean of 1.48 K (90% CI: (1.40 K, 1.57 K)), which is in agreement with 1.39 K for the reference climatology

and values between 1.08 K and 1.54 K for the PMIP3 climatologies. The heterogeneity of MTCO is higher than of MTWA,

but again, the mean posterior value of 2.18 K (90% CI: (2.09 K, 2.27 K)) is in concordance with the reference climatology

(2.02 K) and the PMIP3 climatologies (between 1.89 K and 2.41 K). From these results, we deduce that the posterior has a

reasonable degree of spatial smoothing.5

4.2 Added value of the reconstruction

The skill of the reconstruction is measured using the BSS, defined in Eq. (16), in cross-validation experiments. For positive

BSS values, the posterior distribution is superior to the prior, which means that constraining the PMIP3 ensemble by proxy data

adds value to the reconstruction. On the other hand, the posterior distribution is inferior to the prior for negative values. This

would indicate inconsistencies in the local proxy reconstructions, a scaling mismatch of simulations and data, or the existence10

of spurious correlations in the prior covariance matrix.

For most left-out proxy samples the BSS is positive (80% of grid boxes with left-out pollen data) with a median of 0.39

(Fig. 6). The BSS values are predominantly positive for all regions but the British Islands and Norway. This indicates a high

consistency of the reconstruction in large parts of the domain due to a good fit of the local reconstructions with the spatial

correlation structure. In particular, we see a consistent MTWA cooling south of 54° N in the local reconstructions compared15

to the prior distribution. This leads to a mean cooling and reduction of uncertainty in the posterior which is transported to

grid boxes without proxy data, including those with left-out proxy data, via spatial correlations and higher weights for cooler

ensemble members. Similarly, the consistent MTWA and MTCO warming of the local reconstructions in the north-eastern part

of the domain lead to positive BSS values.

The persistent negative BSS values for the British Islands and Norway cannot be explained by data outliers but warrant a20

more systematic issue. For these two regions, the uncertainty in the local reconstructions is larger than for other areas (Fig. 4),

such that the local proxy records constrain the posterior less than the posterior ensemble member weights and some of the more

distanced proxy records. The spatial correlations and degenerated weights (see Sect. 4.3) lead to a reduction of the posterior

uncertainty compared to the unconstrained PMIP3 ensemble (Fig. 5e, 5f) but without improving the concordance of the mean

state with the local reconstructions, which in turn results in negative BSS values. In and near the Alps, BSS values are near25

zero indicating no added value from constraining the PMIP3 ensemble by proxy data. This might be a result of not accounting

enough for orographic effects in the different sources of information.

4.3 Posterior ensemble member weights

The posterior weights of the PMIP3 ensemble members are determined by ω and z. The posterior of ω is a combination of its

prior and the distribution of model choices z. As we defined a Jeffrey’s prior and choose only one ensemble member in each30

MCMC step, the posterior of ω is a flattened version of the posterior of z (Fig. 7). z is more relevant for the posterior of the

state Cp as it determines which ensemble member is chosen in each MCMC step. The posterior of z combines the distribution
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of ω and the likelihood of Cp for each of the ensemble members (see Appendix A). The latter term is more informative and

therefore more important for determining z.

In our reconstruction, the posterior weights are dominated by the MPI-ESM-P climatology, with a posterior mean of z of

0.98 (blue diamonds in Fig. 7). The degeneracy of weights can be explained by large differences between PMIP3 climatologies.

Because there is less uncertainty in the local MTWA reconstructions, it is the major variable for determining the posterior5

ensemble member weights. Among all included models, the MPI-ESM-P simulation is closest to the dipole structure with

MTWA warming in northern and cooling in southern Europe, which explains the high model weight.

The prior climate state is changed in two ways during the inference: The ensemble member weights are updated, and each

of the mixture components is modified according to the proxy data. By comparing the posterior with the prior and the local

reconstructions, it can be seen that for most terrestrial areas the posterior mean resembles the local reconstructions more than10

the PMIP3 ensemble mean. This shows that the uncertainty in the prior distribution is large enough to lead to a reconstruction

which is mostly determined by proxy data wherever available. The main exceptions are the British Islands and Norway, where

the local reconstructions are not informative enough to strongly affect the joint signal from posterior ensemble member weights

and farther away proxy samples. The aforementioned changes of the prior lead to a posterior mean which is cooler than the

prior mean for MTWA for most of the domain except northern areas. For MTCO, the posterior mean is much warmer in15

northern Europe than the prior mean and slightly cooler in southern Europe.

4.4 Sensitivity with respect to the glasso penalty parameter

As described in Sect. 3.2, the glasso algorithm, which regularizes the covariance matrix estimated from the PMIP3 ensemble,

requires the specification of a penalty parameter ρ. Values of at least 0.3 produce numerically stable matrices. Larger values

lead to smaller correlations, and therefore higher posterior uncertainties due to less spatial transfer of information from the20

proxy data. To test the influence of ρ on the reconstruction results, we compute reconstructions and cross-validations for

ρ= 0.3,0.5,0.7,1.0,2.0.

The fraction of the penalty term on the total cost given by Eq. (5) increases from 79.5% for ρ= 0.3 to 98.5% for ρ= 2.0

(Fig. 8) showing the generally high influence of the penalty term due to the small ensemble size and the increasing importance

for larger ρ. While the mean BS is lowest for ρ= 0.3 with 0.37 and increases with ρ, the differences are small in total with25

0.44 being the highest value for ρ= 2.0 (Fig. 8). The mean value of the posterior climate and the posterior ensemble member

weights are insensitive to changes in ρ with differences in the mean spatial average of at most 0.3 K (Fig. 8) as well as no

substantial regional differences, and mean z values for MPI-ESM-P of more than 0.98 in all cases. On the other hand, the

posterior uncertainty grows substantially for larger ρ values. While the spatially averaged size of point-wise 90% CIs is 3.03

K for ρ= 0.3, the value increases to 6.34 K for ρ= 2.0 (Fig. 8).30

4.5 Joint versus separate MTWA and MTCO reconstructions

To compare the effect of reconstructing MTWA and MTCO jointly compared to separately, additional reconstructions with only

one climate variable are computed. Note that the interactions of MTWA and MTCO are twofold in the joint reconstruction:
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(a) the response functions have an interaction term in the logistic regression Eq. (7), and (b) the process stage Eq. (6) contains

joint ensemble member weights for MTWA and MTCO as well as inter-variable correlations in the covariance matrix.

The separate MTWA reconstruction is warmer than the joint reconstruction, with the spatially averaged posterior mean being

0.63 K warmer. On the other hand, the spatially averaged posterior mean of the separate MTCO reconstruction is 1.05 K cooler.

Hence, the seasonal difference is smaller in the joint reconstruction, due to smoothing from the PMIP3 ensemble and slightly5

positive correlations between MTWA and MTCO in most of the joint local reconstructions. The MTWA only reconstruction is

warmer in most land areas, with largest differences in southern Europe, but most of the differences are not significant on a 5%

level (Fig. 9a). As this part of the domain is best constrained by proxy data, and because the posterior ensemble member weights

are similar to the joint reconstruction (mean z of 0.93 for MPI-ESM-P, Fig. 7), it is likely that the additional warming is due to

the missing interaction in the transferfunction. On the other hand, the posterior ensemble member weights are very different for10

the separate MTCO reconstruction, with HadGEM2-CC and MRI-CGCM3 being the models with the highest weights (mean

z of 0.65 and 0.34, respectively). Together with the less constrained transferfunctions for MTCO than MTWA and the missing

interaction term, this leads to a cooler reconstruction for all areas but some parts of central Europe and the Mediterranean

(Fig. 9b). The cooling is strongest in Scandinavia, the British Islands, the Norwegian Sea, and the Iberian peninsula. As these

are the regions which are least constrained by proxy data (Fig. 4d), choosing different PMIP3 ensemble members affects the15

reconstruction more than in other areas. Many of the differences in Fennoscandia and the south-western part of the domain are

significant (5% level), which indicates that for these areas our method might underestimate the reconstruction uncertainty.

The missing interaction of MTWA and MTCO also leads to a higher uncertainty in the separate reconstructions, in particular

in areas which are not well constrained by proxy data. For MTWA, the difference is relatively small with spatially averaged

only 0.2 K larger point-wise 90% CIs. The spatial average of the point-wise 90% CIs for MTCO is 0.96 K larger than in the20

joint reconstruction, showing again that reconstructing the variables jointly has a larger effect on MTCO than on MTWA. The

larger MTCO uncertainties are mostly due to much larger CIs at the Norwegian Sea (Fig. 9d).

The sign of the BSS in the MTWA only reconstruction is mostly the same than in the joint reconstruction, but the magnitude is

smaller for most grid boxes (Fig. 9e). This shows that the added value of the joint reconstruction compared to the unconstrained

PMIP3 ensemble is mainly determined by the MTWA reconstruction. In particular, the negative BSS at the British Islands and25

Norway, which is found in the joint reconstruction, is also present in the MTWA only reconstruction but not in the MTCO only

reconstruction. For most of the domain, the BSS values of the MTCO only reconstruction are small (Fig. 9f), which indicates

no or only little added value from including proxy data. Particularly in central Europe, the values are very close to zero because

the comparably small PMIP3 ensemble spread (Fig. 1d) is just weakly constrained by local reconstructions.

5 Discussion and possible extensions30

5.1 Robustness of the reconstruction

Our approach is designed with the goal of being more suitable for sparse data situations than standard geostatistical models.

In a subsequent paper, we plan to apply the method to data from the Last Glacial Maximum, for which considerably less
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proxy samples are available than for the MH. To understand the robustness of our method with respect to the amount of data

included in a proxy synthesis, we perform experiments with only half of the samples, which are either selected to retain the

spatial distribution or chosen randomly. In all of the tests, the general spatial structure of the posterior distribution, including

the anomaly patterns, is preserved. Only the northern part of the MTCO reconstruction, especially the Norwegian Sea, changes

substantially in some experiments. While in each experiment MPI-ESM-P remains the favoured ensemble member, other5

members can reach weights, which are higher than in the prior. The spatially averaged temperatures as well as the spatial

homogeneity H stay within the uncertainty ranges of the reference reconstruction. The uncertainty structure of all tests is

similar to the reference reconstruction but the lower number of proxy records leads to an increase of the overall uncertainty.

For example, the spatially averaged point-wise 90% CIs grow by up to 0.5 K. This number is still low compared to the overall

uncertainty keeping in mind that the number of proxy samples is reduced by 50%. The experiments show that our method is10

robust with respect to the number of proxy samples as long as the remaining samples are informative and relatively uniformly

distributed across space. In our example, this is not the case for the Norwegian Sea. Combining pollen records with sea surface

temperature proxies could potentially overcome this issue.

The more constrained local MTWA reconstructions lead to a higher influence on the joint reconstruction than the local

MTCO reconstructions. Therefore, the MTCO only reconstruction differs more from the MTCO estimate in the joint recon-15

struction. Reconstructing MTWA and MTCO jointly should in theory lead to a physically more reasonable reconstruction by

creating samples drawn from the same ensemble member and therefore corresponding to a physically consistent MTWA and

MTCO simulation. On the other hand, Rehfeld et al. (2016) show that multi-variable reconstructions can be biased when sig-

nals from a dominant variable are transferred to a minor variable. While we believe that the PITM model is less sensitive to

this issue than the weighted averaging partial least squares (WA-PLS) method used in Rehfeld et al. (2016) because it better20

respects the larger MTCO uncertainties, it will be subject to future work to study whether joint or separate reconstructions lead

to more reliable results.

The large PMIP3 ensemble spread for most grid boxes shows that the prior distribution, which is calculated from the ensem-

ble, contains a wide range of possible states. In areas which are well constrained by proxy data, this large total uncertainty leads

to a reconstruction which depends little on the climatologies of the ensemble members. Hence, in these areas the reconstruction25

is not much influenced by the ensemble member weights. On the other hand, the spatial correlation structure estimated from

the ensemble controls the smoothness of the reconstruction and the spread of local information into space. As the correlation

structure becomes more robust for larger ensemble sizes, it would be desirable to have larger ensembles available for future

applications of our method. In addition, the current ensemble covers only modelling uncertainty, while internal variability and

uncertainties in forcings are not explicitly included. A possible extension of our method would use ensembles which account30

for all these types of uncertainty in a structured way allowing the estimation of a better constrained prior distribution. For most

of terrestrial Europe, the posterior mean is more similar to the local proxy reconstructions than to the prior mean from the

unconstrained ensemble. This shows that the spatial structure is the more important part of the prior distribution compared to

the mean state as long as the prior uncertainty is larger than the proxy uncertainty. Therefore, our method is applicable despite

well-known model-data mismatches for the MH (Mauri et al., 2014).35
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5.2 Comparison with previous reconstructions

Several reconstructions of European climate during the MH have been compiled previously. Here, we compare our reconstruc-

tions to those of Mauri et al. (2015), Simonis et al. (2012), and Bartlein et al. (2011).

Mauri et al. (2015) use a plant functional type modern analogue transferfunction and a thin splate interpolation for pollen

samples stemming mostly from the European pollen database. The simpler interpolation method allows the treatment of the5

samples as point data and the interpolation of the local reconstructions to an arbitrary grid. Among other variables, summer and

winter temperatures are reconstructed. We find a dipole anomaly structure similar to Mauri et al. (2015) in our reconstructions,

with mostly positive anomalies in northern Europe and negative anomalies in southern Europe. In Mauri et al. (2015) as well

as in our reconstruction, the Alps are the only region with significant warming in central and southern Europe for summer

temperature. Generally, the amplitude of summer anomalies in the two reconstructions are similar, although locally there are10

differences with cooler anomalies at the British Islands and southern Fennoscandia in our reconstruction as well as warmer

anomalies in south-eastern Europe and Finland. For winter temperatures, we do not find the cooling over the British Islands

that is reported in Mauri et al. (2015). As for summer temperatures, we find smaller anomalies in southern Fennoscandia. In

contrast, our reconstruction shows higher anomalies in northern Scandinavia. In all other regions, the amplitude of anomalies

are similar between the two reconstructions despite some local disagreements.15

The same pollen dataset and a closely related transferfunction than in our reconstruction are used in Simonis et al. (2012) to

reconstruct July and January temperature, such that differences between the two reconstructions are mostly related to the dif-

ferent smoothing technique. Simonis et al. (2012) minimize a cost function which combines pollen samples with an advection-

diffusion model that is driven by insolation changes between the MH and today. In Simonis et al. (2012), the dipole structure is

not found in the same way than in our reconstruction, which might be due to the different way how regions which are not well20

constrained by proxy data are treated. Both reconstructions share positive summer temperature anomalies in northern Europe

as well as negative anomalies in central Europe and the Iberian peninsula. Unlike our reconstruction, Simonis et al. (2012) find

positive anomalies in western and south-eastern Europe. For winter temperatures, the reconstruction of Simonis et al. (2012)

shows an east-west dipole in contrast to the north-east to south-west dipole in our reconstruction. This different structure might

be due to the smaller proxy data control of the winter reconstructions, which leads to a higher importance of the interpolation25

schemes.

A reconstruction designed to evaluate the PMIP3 simulations was provided by Bartlein et al. (2011). They combine a large

number of pollen based local reconstructions from the literature to produce a gridded product of six climate variables including

MTWA and MTCO. In contrast to our reconstruction, the used local reconstructions are not smoothed across space but only

within a grid box. Their results show a dipole structure but less pronounced than in our reconstruction and in Mauri et al. (2015).30

In particular, they find a cooling for eastern Fennoscandia in summer, a much smaller warming of northern Fennoscandia than

our reconstruction, and a warming in Germany and France. On the other hand, the reported anomalies in Bartlein et al. (2011)

for the Mediterranean and eastern Europe are similar to our results.
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The comparisons show that patterns like the dipole type anomaly structure, which are not present in the PMIP3 ensemble,

seem to be consistent across pollen transferfunctions. While some of the differences between the existing literature and our

results can be explained by the used transferfunctions and proxy syntheses, the choice of an appropriate interpolation method

plays an important role, too, especially in areas with very sparse and weakly informative proxy data and to determine the degree

of smoothing.5

To facilitate more quantitative comparisons of reconstructions and allow a fair testing of modelling assumptions, we plan

to expand our current framework to different types of transferfunctions and interpolation techniques. In particular, an imple-

mentation of a parametric process stage using the model of Simonis et al. (2012), which is independent of climate simulation

output, is envisaged.

5.3 Towards global and spatio-temporal reconstructions10

A valuable extension of our approach would be the computation of reconstructions on hemispheric to global scales. In this

case, a more flexible structure for the ensemble member weights is desirable to account for the varying skill of climate models

in different regions. On the other hand, the weights should not change too much within small domains to avoid unreasonable

spatial heterogeneity. A way to combine those two aspects would be a cost function for the model weights, which combines a

spatial smoothing term and the local fit of the ensemble members with proxy data. The balancing of those two terms to optimize15

the degree of smoothing and to respect the local proxy reconstructions is a challenging task itself. An additional problem is

that the penalty parameter ρ in the glasso algorithm is applied locally, such that different regions require different values of

ρ to result in a numerically stable covariance matrix and to optimize the criteria described in Sect. 3.2. While glasso allows

spatially varying penalty parameters, optimizing the values in an objective way is a complicated issue. An alternative would be

the reformulation of the penalty term in Eq. (5), such that not only local properties are optimized but also the structure between20

subregions. One possibility to achieve this could be the use of an additional L2-penalization as in Zou et al. (2006).

Computing spatio-temporal reconstructions with our approach currently faces two challenges: The increasing dimensionality

due to the additional temporal component, and the small number of available transient paleosimulations with comprehensive

ESMs. In particular, for time scales beyond the last millennium, there is currently no multi-model ensemble available which

is comparable to the PMIP3 simulations for the MH. To deal with the higher dimension a method to reduce the complexity is25

necessary. One way could be a separation of time and space but this might lead to a breakup of the temporal structure in the

climate simulations resulting in inconsistencies in the reconstructions. More generally, any method to reduce the degrees of

freedom in the reconstruction can lead to a significant underestimation of uncertainty if either the dimensionality is reduced too

much or if the retained spatio-temporal patterns are too far from reality. A possibility to deal with both problems would be a

Bayesian framework that combines a flexible parametric interpolation method featuring a large number of degrees of freedom30

with additional constraints from transient as well as time slice simulations to increase the physical consistency.
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6 Conclusions

We presented a new method for probabilistic spatial reconstructions of paleoclimate. The approach combines the strengths of

pollen records, which provide information about the climate state in a small scale domain, and of climate simulations, which

downscale forcing conditions to physically consistent regional climate patterns. Thus, we reconstruct physically reasonable

spatial fields, which are consistent with a given proxy synthesis. Bayesian modelling combined with MCMC methods is well5

suited for paleoclimate reconstructions as it can include multiple sources of information together with the corresponding

uncertainties, and facilitates the separate modelling of proxy-climate transferfunctions and stochastic interpolation between

proxy samples. Our framework can deal with probabilistic transferfunctions, which are non-linear and non-Gaussian, such that

an extension to a wide range of proxies and associated transferfunctions is possible.

We apply our framework to MTWA and MTCO in Europe during the MH using the proxy synthesis of Simonis et al. (2012)10

and the PMIP3 MH ensemble. Brier scores from cross-validations reveal that the spatial reconstruction predominantly adds

value to the unconstrained PMIP3 ensemble, and analyses of the spatial homogeneity of the posterior distribution indicate a

reasonable degree of smoothing through the induced correlation structure. The large scale spatial patterns of our reconstruction

are in agreement with previous work (Mauri et al., 2015; Bartlein et al., 2011). As the posterior mean is more similar to the local

proxy reconstructions than to the prior mean for most terrestrial areas, we see that the main role of the simulation ensemble15

is to provide a spatial correlation structure and that a reconstruction, which is in line with reconstructions that do not include

simulation output, is possible despite well-known model-data mismatches (Mauri et al., 2014). Our framework provides a way

to quantitatively test hypotheses in paleoclimatology and to assess the consistency of a given proxy synthesis. This includes the

fit with large scale structures, the spatial homogeneity, and the quantitative quality control of the proxy data by identification

of potential outliers.20

In future work, we plan to apply our framework to new multi-proxy syntheses like the one currently compiled in the German

PalMod project (www.palmod.de). This includes the incorporation of new proxies and transferfunctions as well as the use of

larger spatial domains. In particular, the lower degree of uncertainty reduction for the marine parts of the domain suggests

an inclusion of supplementary marine proxies. Moreover, the addition of new high resolution paleosimulations for example

from the ongoing PalMod and Paleoclimate Modelling Intercomparison Project Phase 4 (PMIP4) projects (Kageyama et al.,25

2018) will lead to a better quantification of uncertainties in the prior mixture distribution and, subsequently, to more robust

reconstructions.

The hierarchical structure of the framework permits the replacement of the spatial interpolation module by other types of

stochastic interpolation, e.g. geostatistical models (Tingley et al., 2012) or simple physical models (Gebhardt et al., 2008). The

comparison of our current framework with these different modelling assumptions will lead to an improved understanding of30

the spatial patterns of past climate.
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Appendix A: Full conditional distributions

The Metropolis-within-Gibbs approach samples (asymptotically) from the full conditional distributions of each variable, i.e.

the distribution of the variable given all other variables. Some variables are treated block-wise to account for correlations

between them, while others are updated sequentially if they are independent from each other or the joint distribution is too

complicated for efficient sampling. In this appendix, we detail the conditional distributions that are used for sampling.5

To sample the transferfunction parameters, we introduce PG distributed augmented variables γTl , where T ∈ T (P ) and

l = 1, ...,L(T ) are the number of observations for taxa T (Polson et al., 2013). γTl is PG distributed given βT = (βT1 , ...,β
T
6 )

and climate data C(l) = (C1(l),C2(l)), where C1 and C2 denote MTWA and MTCO. More precisely, the full conditional

distribution is given by

γTl | βT , C(l) ∼ PG(n= 1,XC(l) ·βT ), (A1)10

where XC(l) :=
(
1,C1(l),C2(l),C1(l)C2(l),C1(l)2,C2(l)2

)
. (A2)

Including the Gaussian prior defined in Sect. 3.3, the full conditional of βT is multivariate normal distributed:

βT | PTm, PTp , γT1 , ...,γTL(T ) ∼ N
(
VγX

tκT ,Vγ
)
, (A3)

where Vγ :=
(
XtΓX +B−1

)−1
. (A4)

Here, X is a matrix with rows XC(l) for l = 1, ...,L(T ), Γ is a diagonal matrix with entries γTl , B is the 6×6 prior covariance15

matrix of βT , and κT is a vector with entries
(
PT (l)− 1

2

)
, where PT (l) is the presence or absence of taxa T in observation

l. In our case, B is a diagonal matrix with all values equal to 10. Details on the definition of PG variables and the augmented

Gibbs sampler can be found in Polson et al. (2013).

The full conditional of ω = (ω1, ...,ωK) is Dirichlet distributed given z = (z1, ...zK) and its Dirichlet prior:

ω | z ∼ Dirichlet
(

1
2 + z1, ...,

1
2 + zK

)
. (A5)20

Given ω and Cp, z is multinomially distributed:

z | ω, Cp ∼ Multinomial(n= 1,α1, ...,αK) , (A6)

where αk :=
ωk ·exp

(
− 1

2 (Cp−µk)t Σ−1
prior (Cp−µk)

)
∑K

i=1

(
ωi ·exp

(
− 1

2 (Cp−µi)t Σ−1
prior (Cp−µi)

)) (A7)

We update Cp(x) for x ∈ xP sequentially using random walk Metropolis-Hastings sampling. The set of all grid boxes but x is

denoted by Yx, and let Σ−1
prior(a,b) be the block of the inverse covariance matrix containing the rows a and columns b. Then,25

the full conditional distribution of Cp(x) depends on the pollen samples Pp(s) with location xs = x, the climate Cp(Yx) at the

other locations, and the chosen model z with zk = 1. It does not follow a standard distribution:

Cp(x) | Pp, Cp(Yx), z ∼ N
(
µ̃k(x),

(
Σ−1

prior(x,x)
)−1

) ∏

s
with
xs=x

∏

T∈T (s)

logit
(
XCp(x) ·βT

)
, (A8)

where µ̃k(x) := µk(x)−
(

Σ−1
prior(x,x)

)−1

Σ−1
prior(x,Yx)(Cp(Yx)−µk(Yx)) . (A9)
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The step size of the random walk proposals is controlled by the conditional covariance
(

Σ−1
prior(x,x)

)−1

.

Conditioned on Cp(xP ) and z with zk = 1, Cp(xQ) follows a Gaussian distribution:

Cp(xQ) | Cp(xP ), z ∼ N
(
µ̃k(xQ),

(
Σ−1

prior(xQ,xQ)
)−1

)
, (A10)

where µ̃k(xQ) := µk(xQ)−
(

Σ−1
prior(xQ,xQ)

)−1

Σ−1
prior(xQ,xP )(Cp(xP )−µk(xP )) . (A11)

Appendix B: Pseudo-code for MC3 algorithm5

For our reconstructions, we use J = 2500 iterations of M = 30 steps to draw altogether 75,000 samples from A= 8 MCMC

chains (see Sect. 3.4). The MC3 algorithm follows the pseudo-code in Algorithm 1.

If the modularized version is used, 75,000 samples of the transferfunction parameters θ are drawn first. These are used for

subsequent reconstructions which follow the pseudo-code without sampling the transferfunction parameters.
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Figure 1. PMIP3 MH ensemble mean anomaly from CRU reference climatology, (a) MTWA, (b) MTCO, and ensemble spread as size of

point-wise 90% CIs of the prior mixture distribution, (c) MTWA, (d) MTCO. Black dots depict proxy samples from Simonis et al. (2012). In

the top row, point-wise significant anomalies (5% level) are marked by black crosses.
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Spatial structure
from PMIP3 ensemble

µ1, ..., µk,Σprior

Past climate

P(Cp|ω) =
∑K

k=1 ωk N (µk,Σprior)

Model weights
P(ω) = Dir(1

2 , ...,
1
2)

Fossil pollen

P(Pp|Cp, θ) =
∏

s

∏
T (s) P(P T

p (s)|Cp(xs), β
T )

Transferfunction
parameters

θ =
(
βT

i , i = 1, ..., 6, T ∈ T (P )
)

P(βT
i ) ∼ N (0, 10),

Modern pollen

P(Pm|Cm, θ) =
∏

T

∏
s P(P T

m(s)|Cm(xs), β
T )

Modern climate

Cm

Figure 2. Directed acyclic graph corresponding to the Bayesian framework Eq. (2). Involved quantities are given by nodes and arrows

indicate dependences of variables. Details of the formulas are explained in Sect. 3.2 and 3.3. White: inferred quantities; gray: input data.
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(b) Hedera helix
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Figure 3. Response functions for Betula nana (a) and Hedera helix (b). The probability of presence of the taxa is shown in colours, black dots

denote presence of the taxa, and gray dots denote absence of the taxa in the calibration dataset. In the climate space, combinations of MTWA

and MTCO above the gray line at MTWA = MTCO cannot occur by definition. Gray dots above this line are artificial absence information

added to account for this constraint.
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Figure 4. Summary statistics of local reconstructions using the PITM forward model. Top row: mean anomaly from CRU reference clima-

tology (left: MTWA, right: MTCO), bottom row: uncertainty measured by the size of marginal 90% CIs (left: MTWA, right: MTCO). In the

top row, significant anomalies (5% level) are marked by black crosses.
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Figure 5. Spatial reconstruction for MH. Top row: Posterior mean anomaly from CRU reference climatology (left: MTWA, right: MTCO),

middle row: reconstruction uncertainty plotted as size of point-wise 90% CIs (left: MTWA, right: MTCO), bottom row: reduction of uncer-

tainty from posterior to prior measured by ratio of posterior to prior point-wise 90% CI sizes (left: MTWA, right: MTCO). Black dots depict

proxy samples. In the top row, point-wise significant anomalies (5% level) are marked by black crosses.
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Figure 6. BSS from leave-one-out cross-validation. For positive values the posterior is superior to the prior distribution from the uncon-

strained PMIP3 ensemble, while for negative values the posterior is inferior to the prior. (a) histogram, (b) spatial distribution
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Figure 7. Posterior ensemble member weights of the reconstructions. The posterior of ω in the joint reconstruction is shown as boxplot. The

diamonds represent the mean of z in the joint, the MTWA only, and the MTCO only reconstruction. Prior weights (mean of z) are denoted

by the dashed line.
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Figure 8. Sensitivity of reconstructions to changes in the glasso penalty parameter ρ. Portion of the penalty term on the total cost in Eq. (5),

mean BS of cross-validations, spatially averaged posterior mean anomaly from CRU reference climatology, and spatially averaged size of

point-wise 90% CIs. All quantities are plotted as percentage of the respective values for ρ= 0.3. Note the non-linear scaling of the x-axis.
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Figure 9. Differences of joint and separate reconstructions of MTWA and MTCO. Top row: posterior mean difference (left: MTWA, right:

MTCO); middle row: difference of size of point-wise 90% CIs (left: MTWA, right: MTCO); bottom row: BSS of the separate reconstructions

(left: MTWA, right: MTCO). Black dots depict proxy samples. In the top row, point-wise significant differences (5% level) between the

separate and the joint reconstructions are marked by black crosses.
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Table 1. Basic information on the PMIP3 climate simulations used to construct the prior in the Bayesian framework (from

https://pmip3.lsce.ipsl.fr)

Model Institute Atmospheric grid Ocean grid Model years MH

CCSM4 NCAR 288x192xL26 320x384xL60 301

CNRM-CM5 CNRM-CERFACS 256x128xL31 362x292xL42 200

CSIRO-Mk3-6-0 CSIRO-QCCCE 192x96xL18 192x195xL31 100

EC-Earth-2-2 ICHEC 320x160xL62 362x292xL42 40

HadGEM2-CC MOHC 192x144xL60 360x216xL40 35

MPI-ESM-P MPI-M 196x98xL47 256x220xL40 100

MRI-CGCM3 MRI 320x160xL48 364x368xL51 100

35

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-87
Manuscript under review for journal Clim. Past
Discussion started: 16 August 2018
c© Author(s) 2018. CC BY 4.0 License.



Table 2. Summary measures for the joint MTWA and MTCO reconstructions (rows 1 and 2) and the separated reconstructions of MTWA

(row 3) and MTCO (row 4). Numbers in brackets are minima and maxima of the corresponding 90% CIs. Additional explanations for all the

columns can be found in Sect. 4.1 to 4.5.

Reconstruction Spatial Spatially Point-wise Spatial Median PMIP model

name mean averaged uncertainty homogeneity BSS with highest

anomaly 90% CI size reduction weight

Joint (0.33 K) (1.40 K)

reconstruction 0.01 K 2.90 K 64.5% 1.48 K

0.39 MPI-ESM-P
(MTWA) (-0.32 K) (1.57 K)

Joint (1.50 K) (2.09 K)

reconstruction 1.11 K 3.18 K 58.6% 2.18 K

(MTCO) (0.74 K) (2.27 K)

Separate (0.96 K) (1.38 K)

MTWA 0.64 K 3.10 K 62.2% 1.47 K 0.16 MPI-ESM-P

reconstruction (0.30 K) (1.55 K)

Separate (0.92 K) (2.45 K)

MTCO 0.06 K 4.14 K 49.4% 2.66 K 0.04 HadGem2-CC

reconstruction (-0.79 K) (2.86 K)

36

Clim. Past Discuss., https://doi.org/10.5194/cp-2018-87
Manuscript under review for journal Clim. Past
Discussion started: 16 August 2018
c© Author(s) 2018. CC BY 4.0 License.



Algorithm 1 Pseudo-code for MC3 algorithm

Initialize A MCMC chains

for j = 1, ...,J do

for m= 1, ...,M do

for T ∈ T (P ) do

for l = 1, ...,L(T ) do

Sample from full conditional of γT
l

end for

Sample from full condition of βT

end for

Sample from full conditional of ω

Sample from full conditional of z

for x ∈ xP do

Sample random walk proposal for Cp(x)

Calculate Metropolis-Hastings ratio r

Accept proposal for Cp(x) with probability p= max(1, r)

end for

end for

for a= 1, ...,(A− 1) do

Calculate Metropolis-Hastings ratio r of chains a and a+1

Swap chains a and a+1 with probability p= max(1, r)

end for

end for

for i= 1, ...,JM do

Sample from full conditional of Cp(xQ)

end for
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